v//

Advanced Programming

Exception Handling

/

“Example =

public class Quotient {
public static void main(String[] args) {
Scanner input = new Scanner(System.1in);

// Prompt the user to enter two integers
System.out.print("Enter two integers: ");
int numberl = input.nextInt();
int number2 = input.nextInt();

System.out.println(numberl + " / " + number2 +
+ (numberl / number2));

1s

public class QuotientWithException {
public static void main(String[] args) {
Scanner input = new Scanner(System.1in);
System.out.print("Enter two integers: ");
int numberl = input.nextInt();
int number2 = input.nextInt();

try {

if (number2 == 0)
throw new ArithmeticException("Divisor cannot
be zero");
System.out.println(numberl + " / " + number2 +

n_

1s “ + (numberl / number2));
} catch (ArithmeticException ex) {
System.out.println("Exception: an 1integer

n

+ "cannot be divided by zero ");

}

System.out.println("Execution continues ...");

Exception-Handling Overview

The program contains a try block and a catch block.

e The try block contains the code that is executed in normal
circumstances.

e The catch block contains the code that is executed when number2
1S O.
The value thrown, in this case new ArithmeticException
("Divisor cannot be zero"), is called an exception.

The execution of a throw statement is called throwing an
exception. The exception is an object created from an
exception class.

 In this case, the exception class is java.lang.ArithmeticException.

.

Exception Types

Mlci]— Throwable |<]—

— Exception |<]7

— ClassNotFoundException I

— I0Exception |

— RuntimeException |<]—

— Error |<j—

— Many more classes

— LinkageError

— ArithmeticException |

— NullPointerException |

— IndexOutOfBoundsException |

— ITlegalArgumentException

— VirtualMachi neErmrl

— Many more classes

— Many more classes

Exceptions

ClassNotFoundException: Attempt to use a class
that does not exist.

e if you tried to run a nonexistent class using the java
command,

e or if your program were composed of three class files,
only two of which could be found.

[OException: Related to input/output operations,
such as invalid input, reading past the end of a file,
and opening a nonexistent file.

o

Runtime exceptions

Runtime exceptions are represented in the
RuntimeException class, which describes
programming errors, such as bad casting, accessing an
out-of-bounds array, and numeric errors.

e Runtime exceptions are generally thrown by the JVM

=

Runtime exceptions

ArithmeticException: Dividing an integer by zero.
Note that floating-point arithmetic does not throw
exceptions.

NullPointerException: Attempt to access an object
through a null reference variable.

IndexOutOfBoundsException: Index to an array is
out of range.

IllegalArgumentException: A method is passed an
argument that is illegal or inappropriate.

\/

"~ “More on Exception Handling

* Java’s exception-handling model is based on three
operations:

e Declaring an exception,
e Throwing an exception,

e Catching an exception.

~<—1—— Declare exception
methodl() { method2 () : 'throws Exceptwnn {

[rmmemmm e eemseeeeeee ooy /-‘V ---------------------------

rtry { : if (an error occurs) {

i invoke method2; 1

P} ' ' throw new Exception(): '*—— Throw exception
icatch (Exception ex) {: Jrommmmmmmmmmemmmm e

Catch exception —> | Process exception; | ¥
'+ ’

Decla ring Exceptions

To declare an exception in a method, use the throws
keyword in the method header:

public void myMethod() throws IOException

The throws keyword indicates that myMethod might
throw an IOException.

[f the method might throw multiple exceptions, add a
list of the exceptions, separated by commas, after
throws:

public void myMethod() throws Exceptioni,
Exception2, ..., ExceptionN

Throwing Exceptions

A program that detects an error can create an instance
of an appropriate exception type and throw it.

Example:

e The program detects that an argument passed to the
method violates the method contract (e.g., the
argument must be nonnegative, but a negative
argument is passed); T

e The program can create an instance of
IllegalArgumentException and throw it, as follows:

ITlegalArgumentException ex =
new IllegalArgumentException("Wrong Argument’);
throw ex;

—

Catching Exceptions

* When an exception is thrown, it can be caught and
handled in a try-catch block, as follows:

try {
statements; // Statements that may throw exceptions
}
catch (Exceptionl exVarl) {
handler for exceptionl;
}

catch (Exception2 exVar2) {
handler for exceptionZ;

¥

/ \

Catching Exceptions

If no exceptions arise during the execution of the try
block, the catch blocks are skipped.

[f one of the statements inside the try block throws an
exception, Java skips the remaining statements in the
try block and starts the process of finding the code to
handle the exception.

The code that handles the exception is called the
exception handler.

Catching Exceptions

Each catch block is examined in turn, from first to last, to
see whether the type of the exception object is an instance
of the exception class in the catch block.

e The exception object is assigned to the variable declared, and
the code in the catch block is executed.

e If no handler is found, Java exits this method, passes the
exception to the method that invoked the method, and
continues the same process to find a handler.

e If no handler is found in the chain of methods being invoked,
the program terminates and prints an error message on the
console.

The process of finding a handler is called catching an
exception.

Order of exception handlers

The order in which exceptions are specified in catch
blocks is important. A compile error will result if a

catch block for a superclass type appears before a
catch block for a subclass type.

try { try {

I I}

catch (Excepti ex) { catch (RuntimeException ex) {
I }

catch (RuntAmeExXgeption ex) { catch (Exception ex) {

b I}

e C—. il
The finally clause

You may want some code to be executed regardless of
whether an exception occurs or is caught. Java has a

finally clause that can be used to accomplish this
objective.

try {
statements;

}
catch (TheException ex) {
handling ex;

}

finally {
finalStatements;

}

“The finally clause

If no exception arises in the try block, finalStatements is
executed, and the next statement after the try statement is
executed.

If a statement causes an exception in the try block that is
caught in a catch block,

e the rest of statements in the try block are skipped,

e the catch block is executed,
e and the finally clause is executed.
e The next statement after the try statement is executed.

If one of the statements causes an exception that is not
caught in any catch block:

 the other statements in the try block are skipped,
e the finally clause is executed,
e and the exception is passed to the caller of this method.

Reference

Introduction to Java Programming 8™ | Y. Daniel
Liang.

